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Executive Summary 
This report presents a general approach to inferring transmission and source relationships 
among microbial isolates from their genetic sequences.  The outbreak transmission graph 
(also called the transmission tree or transmission network) is the fundamental structure 
which determines the statistical distributions relevant to source attribution.  The nodes of 
this graph are infected individuals or aggregated sub-populations of individuals in which 
transmitted bacteria or viruses undergo clonal expansion, leading to a genetically 
heterogeneous population. Each edge of the graph represents a transmission event in 
which one or a small number of bacteria or virions infects another node thus increasing 
the size of the transmission network.  Recombination and re-assortment events originate 
in nodes which are common to two distinct networks. 
 
In order to calculate the probability that one node was infected by another, given the 
observed genetic sequences of microbial isolates sampled from them, we require two 
fundamental probability distributions.  The first is the probability of obtaining the 
observed mutational differences between two isolates given that they are separated by M 
steps in a transmission network.  The second is the probability that two nodes sampled 
randomly from an outbreak transmission network are separated by M transmission 
events.  We show how these distributions can be obtained from the genetic sequences of 
isolates obtained by sampling from past outbreaks combined with data from contact 
tracing studies.  Realistic examples are drawn from the SARS outbreak of 2003, the 
FMDV outbreak in Great Britain in 2001, and HIV transmission cases.   
 
The likelihood estimators derived in this report, and the underlying probability 
distribution functions required to calculate them possess certain compelling general 
properties in the context of microbial forensics.  These include the ability to quantify the 
significance of a sequence “match” or “mismatch” between two isolates; the ability to 
capture non-intuitive effects of network structure on inferential power, including the 
“small world” effect; the insensitivity of inferences to uncertainties in the underlying 
distributions; and the concept of rescaling, i.e. ability to collapse sub-networks into 
single nodes and examine transmission inferences on the rescaled network. 
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1. Introduction 
Microbial forensics is often concerned with the problem of identifying the most probable 
source of an infecting pathogen based on genetic sequence comparisons with isolates of 
that pathogen obtained from a set of potential sources.  Consider, for example, a case 
where a single person (the victim V) is infected with a virus, and we have a suspected 
source S.  (The suspect source might be another individual who was infected with the 
virus during an outbreak, or an isolate that was collected from an infected person during 
some outbreak and held by a laboratory for legitimate research purposes.)  As part of the 
investigation, isolates of the infecting virus are obtained from V and S, and the consensus 
genetic sequences are determined for the two isolates.   A central question is how to 
quantify and express the degree of support that the sequence data provides for the 
hypothesis that the virus was directly transmitted to the victim from the suspect source.     
 
Similarly, suppose there is an unusual outbreak of an infectious disease in some human or 
animal population, and the genetic sequences of isolates collected from the outbreak and 
a suspected reservoir are determined.  Can we state, on the basis of the sequences, the 
probability that the suspected reservoir was the origin of the outbreak?  More generally, 
is there a way based on genetic data to express our confidence quantitatively that the 
outbreak was probably natural, and not the consequence of a deliberate introduction of 
the disease (or vice versa)? 
 
A typical approach to these questions would be to construct a phylogenetic tree to 
compare the genetic sequences of the victim’s or outbreak’s isolates with those of the 
suspected source and a number of “background” isolates.  Unfortunately, phylogenetic 
constructions of this sort are not an adequate basis for determining the confidence levels 
associated with inferences made about source relationships.  This is because a 
phylogenetic tree can provide information about the relative evolutionary relationships 
only among the set of compared isolates, and cannot provide a probabilistic measure that 
includes other possible, but un-sampled (and possibly unknown) sub-populations of that 
microbe.   In most cases it is difficult to identify all potential sources, reservoirs, or 
relevant background isolates, or the relevant isolates and their genetic sequences may not 
be available.  This and other limitations of phylogenetic construction as an inferential tool 
are discussed in more detail in Appendix 1.    
 
In human DNA forensics, “source attribution” is based on explicit probabilities for 
finding the questioned genetic pattern in the human population, or (in paternity/kinship 
cases) under different mating scenarios1,2.  In microbial forensics the consensus genetic 
sequence associated with a certain subpopulation of microbes (for example, the 
population of pathogens infecting an individual) are compared to sequences drawn from 
other subpopulations contained within other distinguishable sources (other individuals, 
some reservoir, or a flask in a laboratory.)   In this case, a useful framework for 
attribution can be built by considering tests of a source hypothesis based on the similarity 
of the genetic sequences contained in the infectee and potential source (infector) sub-
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populations. The key to this approach lies in defining the subpopulations correctly, and 
choosing suitable metrics to evaluate genetic similarity.  
 
In this report we present a probabilistic approach to genetic inference that is based on the 
explicit consideration of certain statistical properties of microbial populations of 
infectious diseases.  We begin with the observation that outbreaks are the fundamental 
objects of interest for understanding those aspects of microbial population genetics 
relevant to microbial forensics, and for framing the hypotheses that can be tested by 
genetic comparisons.  Understanding the underlying natural structure of outbreak 
populations is critical for quantifying the confidence with which hypotheses about 
disease transmission and disease sources can be affirmed or refuted.  This underlying 
structure is determined by the transmission network which connects all sub-populations 
of the microbe, and the relevant probability sampling distributions are those associated 
with the probability of observing genetic variation after a transmission step, and the 
chances of drawing at random two nodes from the network related by a certain number of 
transmission steps.  Thus, the theory presented here weds two very active recent fields of 
research: microbial genetic evolution3,4 and the modern network theory of infectious 
disease outbreaks5-12.   
 
While the theory is applicable to both viral and bacterial pathogens, epidemiologically 
referenced sequence data extensive enough to permit estimation of the required genetic 
sampling distributions is currently only available for viruses. (In fact, even this data is 
just barely adequate to illustrate how the framework can be applied.)  In the near term 
(perhaps three to five years) this situation is likely to persist for bacterial pathogens, but 
given recent advances in sequencing technology it is likely that the available viral data 
will greatly expand, leading to significant improvements in the range of application and 
predictive accuracy of the theory.  Therefore this report will primarily focus on viruses.   
As high throughput sequencing becomes even faster and cheaper, it will become feasible 
to apply the framework to bacterial pathogens as well.   
 
The remainder of this report is organized into 6 sections.  In Section 2 we derive the 
general framework and discuss how the probability distributions that are needed to 
perform calculations may be determined.  In section 3 we illustrate the theory’s 
application to several source attribution problems using data from the 2003 SARS 
outbreak and the 2001 FMDV outbreak in Great Britain.   In section 4 we show how the 
theory can be extended to answer questions about natural sources of disease outbreaks, 
including how to differentiate a natural from a deliberate event.  Section 5 describes how 
the framework can be utilized as the basis for a CODIS-like decision support system in 
microbial forensics.  Section 6 discusses strategies for experimental and computational 
validation of the framework.   Finally, Section 7 summarizes the current status of the 
framework, identifies outstanding problems that remain to be solved, and discusses 
possible future directions.  
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2.  Genetic inference on transmission trees 
 
General framework 
Consider the case described in the introduction in which sequences from pathogen 
isolates that are obtained from a victim V and a putative source S are compared.  The key 
to understanding how to generate a quantitative probabilistic measure of confidence that 
S is the source of V’s infection is to recognize that all infectious disease outbreaks are 
characterized by a transmission tree, i.e. a graph (in the sense of graph theory13) where 
the nodes are infected entities and the edges represent transmission events.  This is 
illustrated in Figure 1.   Although our example involves individuals, nodes can be any 
unit within which the viral population is defined (individual hosts, flasks in laboratories, 
herds, cities, etc.) The edges may or may not be assigned a direction associated with the 
transmission event.    In Fig. 1, our putative source is shown as a node in the outbreak 
transmission tree to which its viral sub-population is related. (Note that the actual source 
could be some laboratory isolate, but this had to have been obtained ultimately from 
some infected host in an outbreak.  Strictly speaking the laboratory isolate forms a new 
node in the network, especially if laboratory culture passage is involved.)    
 
Each pair of nodes in a transmission tree such as Fig. 1 is connected by an M-step 
transmission relationship. (For example, the two nodes marked with ✽ in Fig. 1 are 
separated by M = 7 steps; for reasons explained below we do not distinguish direction of 
transmission when calculating node-to-node distances.)  In addition, each node can be 
categorized in terms of the number of steps between it and the “index case”, i.e. the first 
node to be infected in the outbreak.  This number of steps is denoted G, the number of 
generations between the node and the index case.  In Fig. 1, for example, the putative 
source node is a member of the third generation (G = 3) of infection initiated by the index 
case.  
 

 
Figure 1.  A notional disease transmission tree in an outbreak. Each node is an infected individual, and the 
“index case” is the uppermost node.  S1 and S2 are sequences obtained from the victim and putative source 
nodes, marked in red.  Hi represent different hypotheses about the source of the victim’s infection.  
Asterisks mark two nodes separated by 7 transmission steps on this tree.  
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In general, it is highly unlikely that all of the nodes in the tree are known in any real 
outbreak, and even less likely that the interconnections between them are known.   We 
may only have pathogen isolates from a few other nodes, whose relationship to S is 
unknown.   Nonetheless, we can define H0 to be the hypothesis that S is the source of the 
virus that infected V, and an alternative hypothesis that the source of the virus that 
infected V is a different node on the tree, not S.  Inspection of the relationships illustrated 
in Figure 1 reveals that postulating that S is the source is equivalent to saying that there is 
only one transmission step (M = 1) between S and V.  With all other possible source 
nodes, S1 and S2 are separated by more than one step.  Thus, our hypothesis H0 is 
equivalent to the hypothesis that M = 1, and the alternative hypothesis is M > 1.   
 

 
Figure 2.  Basic genetic structure of a bacterial population during acute infection3.  Each small circle 
represents a separate genomic sequence, with colors representing different genotypes4. Large circles 
represent isolated environments (e.g. a single infected host, colony, or fermentation vessel.)  Clonal 
expansion with mutation leads to a mixed sub-population within that environment.  Transfer of a portion of 
the subpopulation to a new environment  (dotted circles, representing infective transmission to a new host 
or inoculation of a new culture vessel) can lead to a change in consensus genotype through statistical 
sampling (“bottlenecking”) or selection (a “sweep”.)  The total population consists of all sub-populations 
including those in all infected hosts (human and non-human, active laboratory cultures, and laboratory 
isolates (in stasis) sampled from those hosts.   
 
Each node-to-node transmission event in the transmission network leads to a potential 
difference between the sub-populations of genetic sequences contained within the parent 
and new nodes. We will assume that an isolate sampled from a node is sequenced, and a 
single representative sequence is used to characterize the isolate.  In the examples 
discussed in this report, S1 and S2 are taken to be consensus sequences derived from each 
isolate, and changes to the consensus sequence from host to host constitute the primary 
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data of interest. However, with the advent of deep sequencing methods, it becomes 
possible to determine a most recent common ancestor (mrca) sequence from a set of 
clonal sequences from the intra-node pathogen population.  The mrca sequence is 
generally a better representative of the population than the consensus sequence because it 
represents the population sequence close to the time of infection.   
 
Figure 2 illustrates mechanisms that can change the representative sequence when a node 
is added to the network by disease transmission.  Transmission of a pathogen involves 
transferring a small fraction of the pathogen population from one infected host to another, 
sometimes only a few organisms.   Thus, node-to-node transfer can be thought of as a 
statistical sampling process.  Acute infection primarily involves clonal expansion of the 
pathogen population within the new host.  In this phase there are two mechanisms that 
can cause the consensus sequence in the new host to differ from that in the infecting host.  
Clonal expansion is accompanied by mutation, so sequence diversity increases as the 
population expands.  Thus, sequences “sampled” from the infecting host in order to infect 
the new host can differ by chance from the consensus in that population.  This 
phenomenon is sometimes referred to as a genetic “bottleneck”2.  The probability of 
obtaining a different consensus sequence in the new host will depend on the pathogen 
population size and resulting diversity within the infecting host at the time of 
transmission.  Adaptive sequence changes, for example in response to selective pressure 
from the new host’s immune system, or tissue specific effects that modulate infectivity 
may also occur.  Selection can shift the consensus even if the original “sample” of 
infecting pathogens is large enough to have essentially the same consensus sequence as 
the host population.  
 
Long-term infection where the pathogen is maintained in the host with a relatively 
constant population size can bring into play additional mechanisms for changing the 
intra-host population of genetic sequences, and modifying the consensus sequence.   
First, Fischer-Wright (also known as “neutral”) genetic drift may occur within the host as 
sequence lineages are removed from the population by chance2,4.  Second, the population 
may change because of additional selective pressures (e.g. administration of anti-
microbial therapeutics) that come into play in that particular host.   A further 
complication to the theory can result when there are a high percentage of nodes that have 
been infected multiple times.  In this circumstance, an infected node may support 
pathogen subpopulations from different origins that recombine genetically.  For 
simplicity we will leave the treatment of such cases to a future report. 
 
As the pathogen population propagates along the branches of the outbreak transmission 
tree, the process of genetic change is random and can be characterized by a distribution 
function that describes the probability of observing changes in the consensus (or mrca) 
sequence after M steps along a chain of infected nodes.  The most general form for this 
distribution for a single step, M = 1, between any two nodes (here denoted 1 and 2 
respectively), is: 
 

P(S1,S2|M=1,τ, t1,t2)       
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where S1 and S2 represent the consensus sequences of the microbial populations in each 
of the two nodes, τ represents the time between infection of node 1 and the transmission  
event between 1 and 2.  The parameters t1 and t2 represent the time intervals between 
infection of each node and the time when isolates are obtained from each of them.  (We 
assume that an isolate represents a sample of a node’s population that is “frozen in time” 
with respect to the course of the infection.  When isolates are derived from additional cell 
culture or animal passages, we consider the passaged samples new isolates associated 
with nodes that represent the populations of the pathogen in the culture vessel or animal 
host.)  
 
We will postulate that inferences about the relationship between two nodes implied by 
sequences S1 and S2 are based on some quantitative comparison between S1 and S2.  This 
quantitative comparison metric is some numerical function of the two sequences.   In our 
derivation, we will assume that the comparison metric is a single scalar quantity, 
although there is no fundamental reason why it could not be multidimensional.    We will 
denote the comparison metric by δ = δ(S1,S2) and refer to δ as the “genetic distance” 
although it need not be a traditional genetic distance measure4. 
 
For simplicity, our inferential framework assumes, as do most other models of molecular 
evolution, that the random process is Markovian, and that the Markov process describing 
evolutionary change is time-reversible, which is also almost universally assumed in 
phylogenetic theory14.   The assumption of reversibility has the effect of making the 
probability function depend only on the absolute number of steps that separate two nodes 
in the transmission tree.  Thus, the transmission tree is regarded as an undirected graph 
with M computed as the number of edges connecting two nodes regardless of whether 
they are connected by a chain through intermediate nodes, or are descended from a 
common ancestor node.    
 
In addition, two other random processes play a role in determining the probability of 
observing a particular δ value.   These arise from the uncertainty in the times t1 and t2 that 
isolates are obtained from a node relative to the time the node is infected, and uncertainty 
in τ, the time that pathogen transmission occurs relative to the time the transmitting node 
was infected.  These factors can affect the probability of observing a certain genetic 
difference between S1 and S2 because, the genetic diversity of the subpopulation of 
pathogens changes as the population size expands, and because of selective pressures and 
genetic drift during later stages of infection.   To take these factors into account we can 
define probability distributions P(t1), P(t2), and P(τ), and average over them to obtain:  
 

P(δ|M) = ∫∫∫ P(δ|M;t1,t2,τ) P(t1) P(t2) P(τ) dt1dt2dτ      (0) 
 
This averaging accounts for the fact that the values of t1, t2 and τ are never known 
precisely.  An explicit derivation of this equation is given in Appendix 2. 
 
The transmission tree associated with an outbreak is also generated by a random process.  
Disease transmission depends on particular mechanisms (e.g. airborne transfer by 
droplets, or the oral-fecal route) that are mediated by various kinds of social contacts. 
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Each transmission tree generated in an actual outbreak can be thought of as a random 
sample from an ensemble of all possible outbreak trees that are consistent with the 
underlying mechanisms of transmission for that pathogen, and the underlying contact 
network for disease transmission.  The probability P(M) that a pair of nodes drawn 
randomly from the tree will be related by M steps is defined on this ensemble of possible 
trees.    
 
Consider an arbitrary sub-tree T drawn from the ensemble of outbreak trees {T} 
associated with outbreaks of the pathogen in question.  Imagine that two nodes are 
chosen at random from this tree, the pathogen isolates from each node are sequenced and 
consensus or mrca sequences S1 and S2 are obtained, from which we calculate the value 
of δ(S1, S2).   The joint probability of observing a particular δ value for a pair of nodes 
that are separated by M steps is given by: 
 

P(δ,M) = P(δ |M)•P(M),       (1) 
 
It must be noted that equation (1) implicitly assumes that the relationship between δ and 
M is independent of the particular tree, but is only a function of host-pathogen 
interactions and the host-host transmission mechanisms for the disease in question, and 
that every node and every transmission event in the tree is governed by the same 
probability distribution.  Normalization clearly requires that ΣMP(M) =1.  The 
probability that two nodes are separated by more than M0 steps is 
  
  

P(M > M0) = ΣJP(J),  where J runs from M0+1 to ∞,     (2) 
 

and the joint probability that two nodes exhibit a genetic difference δ and are separated 
by M>M0 steps is 

                   
P(δ,M > M0) = ΣJP(δ|J)P(J)      (3)  

 
where J runs from M = M0+1 to ∞.   
 
Note that 
 

 P(M ≤ M0) = 1 – P(M > M0)      (4) 
 
and  
 

P(δ,M ≤ M0) = ΣJP(δ|J)P(J)      (5)  
 
where J runs from M = 1 to M0     
 



A Statistical Framework for Microbial Source Attribution Part 1 
Velsko, Allen, and Cunningham 

April 30, 2009 

9 

 
From equations (2) - (5) we can calculate the conditional probabilities  
 

P(δ|M > M0) = P(δ,M > M0)/P(M > M0)      (6) 
 
and 
 

P(δ |M ≤ M0) = P(δ,M ≤ M0)/P(M ≤ M0)      (7) 
 
 
We can now use (6) and (7) and Bayes’s theorem to calculate the probabilities that M > 
M0 or M ≤ M0 given an observed δ value for isolates derived from the two nodes:   
 

P(M>M0|δ) = P(δ|M>M0)P(M>M0)/[P(δ|M>M0)P(M>M0) + P(δ|M≤M0)P(M≤M0)]   (8) 
 
and 
 

P(M≤M0|δ) = P(δ|M≤M0)P(M≤M0)/[P(δ|M≤M0)P(M≤M0) + P(δ|M>M0)P(M>M0)].  (9) 
 
Equations (8) and (9) are the fundamental equations of the inferential framework offered 
in this report.   
 
Referring to the previous discussion of Fig. 1, it is clear that equation (9) provides a 
weight-of-evidence expression relating the measured δ value for a pair of isolates to the 
probability that they were drawn from nodes related by a direct transmission event, i.e. 
H0 is equivalent to setting M0 = 1 in equation (9).  (Strictly, the probability functions 
P(δ|M) and P(M) are not defined for the case M = 0 since they refer to two distinct nodes 
from the network, so the condition M ≤ 1 is equivalent to M = 1.)  
 
Equation (9) with the condition M = 1 can be re-written in the form: 
 

   (10) 
 
where we have made explicit the dependence on S1 and S2, the sequences determined for 
the “victim” and “suspect” nodes.  This form is analogous to the equation used to 
determine the probability of paternity or other familial relations in human DNA forensics. 
 
The fundamental expressions (8) and (9) are the formal basis for calculating probabilities 
within the framework for microbial genetic inference presented in this report.   It is easy 
to see that other types of hypothesis tests can also be defined mutis mutandis within this 
framework.  For example, the distribution P(M=M0|S1,S2), and its complement 
P(M≠M0|S1,S2) where M0 is an arbitrary number have utility for certain kinds of forensic 
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cases where entire transmission chains must be reconstructed.   Regardless of the precise 
form of the hypothesis test, calculations of the posterior probability depend, through 
equations (3) – (7) on the sampling distributions P(δ|M) and P(M).   
 
 
Applying the formalism 
To understand how equations 8 and 9 can be applied by an investigator in a case of 
biological terrorism or criminal activity, consider the following scenario: 
 
There is an outbreak of SARS in a U.S. city, and phylogenetic analysis indicates that the 
sequence of the agent is “closely related to” published SARS CoV sequences from the 
Beijing outbreak of 2003.  Published reports have concluded that the Beijing outbreak 
strains in question were derived from the SARS outbreak in Guangzhou.  How does the 
investigator calculate the probability that the agent was derived from an isolate collected 
from the Beijing outbreak versus the Guangzhou outbreak?  
 
In this scenario, the investigator has one or more isolates of SARS CoV from the U.S. 
outbreak, and a set of published (in this case, consensus) sequences associated with the 
historical SARS outbreak, including “representative” sequences from Beijing and 
Guangzhou.  In addition, he can access published information on SARS transmission 
network topology and size (number of infected people) from the extensive literature on 
SARS epidemiology.   From the existing historical sequence data, he can derive an 
estimate of P(δ|M), using methods explained below.  The Beijing and Guangzhou 
outbreaks can be treated as statistically independent sub-trees of the worldwide SARS 
epidemic, whose size can be estimated from the number of recorded infections in each 
geographic region (corrected for the fraction of infections that go un-recorded, also 
known from epidemiology data.)  Under this assumption, P(M) can be estimated for each 
outbreak, using methods to be discussed shortly.   From P(M) for the Beijing and 
Guangzhou outbreaks, the investigator can also determine a key parameter, the diameter 
of each sub-network, DB and DG.  The network diameter is basically the value of M 
beyond which P(M) is negligible.    
 
The investigator then computes δ between the U.S. outbreak sequences and those from 
the Beijing and Guangzhou outbreaks, which we will call δB and δG respectively.  From 
P(δ|M) and P(M), the investigator can then compute P(M≤DB|δB) and P(M≤DG|δG) from 
equation (9).   P(M≤DB|δB), for example,  can be interpreted as the probability that the 
U.S. sequence and the Beijing sequence both originated from within the Beijing outbreak.    
 
 Note that the investigator can do this kind of comparison for each reference sequence he 
possesses from the Beijing and Guangzhou outbreaks, and the results will vary, 
depending on the relative location within the transmission network of the person from 
whom the isolate was obtained.  Some cases may lead to ambiguous results, if an isolate 
came from a node very close to the node responsible for the transmission of SARS CoV 
between Guangzhou and Beijing.  
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Knowing that it is more probable that the U.S. strain originated from a node in the 
Beijing transmission tree would help focus investigative resources on obtaining 
additional isolates (or sequence data) from that outbreak (which might be held in 
laboratories in any part of the world.)  The provenance can be further narrowed by 
computing P(M≤M0|δB) with M0 < DB.  Ultimately, the investigator can state that the U.S. 
strain is less than M transmission steps away from a particular isolate obtained from the 
Beijing outbreak, with an explicitly calculated probabilty.  For the SARS epidemic of 
2003, if M is small (2 or 3) it will very often imply that the source isolate was obtained 
from a patient treated at a certain hospital, which might provide an additional clue for 
attribution. 
 
Estimating P(δ |M) 
In this section we examine some properties of the sampling distribution P(δ|M), and 
methods for determining it from sequence data determined from pairs of nodes with 
known epidemiological relationships.  For any pair of nodes separated by M transmission 
steps in a completely connected outbreak tree, the observed δ value is a sample from its 
parent distribution.  Unfortunately, a direct approach to determining P(δ|M) by random 
(or exhaustive) sampling of many nodes in the tree cannot generally be applied unless we 
have large, complete and accurate transmission trees so that the relationship between all 
the nodes is known.  Instead, the data available to us in most cases is fragmentary, with 
some degree of uncertainty about the true transmission relationships among the samples.  
However, while P(δ|M) for arbitrary M is currently difficult to deduce accurately by 
purely empirical means, we can provide reasonable representations of  P(δ|M=1) and its 
complement P(δ|M>1) using empirical data from three sources: 
 
(1) The Singapore SARS outbreak of 2003, where whole genome sequences of SARS 
coronavirus isolates were obtained from an epidemiologically linked set of 12 
patients15,16. 
 
(2) The 2001 FMDV outbreak in Great Britain, where whole genome sequences of 
FMDV virus were obtained from an epidemiologically linked set of 20 farms17. 
 
(3) A study by Trask, et. al. which contains partial genome sequences from a set of 63 
pairs of HIV infected sexual partners who were married couples18. 
 
For purposes of this illustration, we will define δ to be the number of single nucleotide 
substitution differences observed between a pair of sequences, denoted k.  For SARS and 
FMDV, each set of whole genome sequences was aligned and all substitution differences 
between each pairs were counted.  For HIV, the env gene sequences were codon-aligned 
to the HXB 2 reference sequence19, regions disrupted by multiple indels were excised, 
and only synonymous substitutions were scored.  In the following discussion it is 
important to keep in mind that different definitions of δ can change the shape of P(δ|M). 
 
Figures 3a,c and e show empirically derived histograms of k observed for pairs of 
sequences derived from isolates obtained from pairs of nodes related by M = 1 and M>1. 
These histograms are estimators for P(k|M=1) and P(k|M>1) respectively.   Next to each 
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distribution figure we have plotted (Figs. 3b,d, and f) the Receiver Operating 
Characteristic (ROC) curve derived from the corresponding distributions.  There are 
several general observations that can be made about these empirical distributions.  First, 
the smaller the sample size, the “noisier” the empirical histograms, and the more 
uncertain our estimates of the distributions.   Second, the larger the network sampled, the 
more separation there is between P(k|M=1) and P(k|M>1), and the sharper the ROC curve 
generated by the data. The empirical ROC curve generated this way provides a valid 
estimator for the likelihood ratio P(k|M=1)/P(k|M>1) in equation (10).  The value of A 
quoted on each figure refers to the value of the likelihood ratio at zero false positive rate, 
which is a measure of how concave the ROC curve is. It is important to note, however, 
that these ROC curves only apply to transmission networks of the same size as the one 
used to generate the data.   
 
Various types of error affect the distribution estimates in Figure 3.  First, the putative 
transmission trees determined by contact tracing for the SARS and FMDV outbreaks 
probably contain errors.  Thus, some of the identified M=1 pairs are actually M>1, and 
vice versa.  Such errors always increase the overlap between the estimated P(δ|M=1) and 
P(δ|M>1), as illustrated in Figure 4.  In outbreaks like SARS and FMDV, transmission 
involves the shedding of large numbers of viruses into the environment, and contact 
tracing can not always identify the true source of an infection.  There can be unknown 
asymptomatic sub-clinical spreaders, and patient recollection may be faulty.   In the case 
of HIV it is well known that sexual partners outside of established relationships are not 
always truthfully disclosed.  Thus, the accuracy of empirical distributions of P(δ|M) 
determined from field data may be compromised.   
 
Second, the empirically determined distributions are affected by the presence of errors in 
the sequence data or the sequence alignments.  In most cases the sequence error rates are 
not determined or reported, so at least a few of the observed differences between 
genomes or genomic regions may be in error.  Moreover, regions containing indels often 
lead to ambiguous local alignments that are inaccurately scored as substitutions.   A third 
potential source of error occurs when infection density is high enough that a significant 
fraction of nodes are infected by two or more independent transmission events. 
Recombination can then introduce errors in the δ value, which is predicated on the clonal 
transmission model.   
 
Third, random errors can be effectively introduced by variations in the time between 
infection and transmission, and between infection and the time isolates are drawn (i.e. the 
parameters t1, t2, and τ in equation (0).)  These errors are expected to be of lowest 
concern for acute diseases like SARS or FMDV, where the distributions P(t1), P(t2) and 
P(τ) are very narrow relative to the timescale of genetic change.  However, for long-term 
diseases such as HIV, these effects are very significant.  When approximate times for 
infection and sampling are known, it is possible that methods for correcting the δ data can 
be developed. However, an accurate treatment of HIV transmission inferences when long 
time delays between sampling and infection are present awaits further research. 
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Figure 3.  a, c, and e: Empirical distributions of the number of substitutions (k) observed between 
pairs of isolates related by a single transmission step (M=1).  All substitutions over the entire genome were 
scored for SARS and FMDV; the HIV data was obtained using partial sequence data from the indicated 
gene regions.  Figs  b, d, and f:  ROC curves based on the empirical distributions.  
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Figure 4. Epidemiological errors exchange δ values belonging to the P(δ|M=1) and P(δ|M>1) distributions, 
causing increased overlap. 
 
As explained above, lack of complete accurate transmission network data generally 
precludes the direct empirical approach to determining P(δ|M) for arbitrary M.  In such 
cases a more practical approach is to use statistical methods to estimate the parameters of 
some theory-based functional form that is then used to perform calculations.  For 
example, one could fit simple functional forms to the M=1 data that automatically imply 
the behavior of the distribution for larger M values.  In exploring this possibility we have 
performed maximum likelihood fits to Poisson and Negative Binomial distributions for 
the P(k|M=1) data shown in Figs 3a,c, and e.  The Poisson form of the general 
distribution is then given by: 
 

P(k|M) = (γM)k/k! e-γM        (11) 
 
The values of the γ parameters and their uncertainties derived from the fitting procedure20 
are given in Table 1.  The form and fitting results for the Negative Binomial are given in 
Appendix 3.  We will simply note here that the value of the parameter that characterizes 
the negative binomial dispersion implies that the Poisson distribution (with one fewer 
parameter) is as good a fit to these data.  Although these well-known distributions have 
great appeal for describing substitution data in other contexts21, statistical tests reveal that 
they do not actually fit the data in Figure 3 very well, as can be seen from the simple χ2 
test results shown in Table 1. 
 
Table 1. Parameters and χ2 results for fitting empirical P(k|M=1) data to a Poisson distribution. 

Data 
γ  (per 

transmission 
step) 

Χ2 # points Support for null 
hypothesis* 

SARS 4.14 ± 0.77 15.3 7 Moderate against 

FMDV 4.29 ± 0.50 3.91 17 No evidence against 

HIV  
env 1.84 ± 0.16 15.5 70 Very strong against 

HIV  
 gag 2.04 ± 0.28 877 36 Very strong against 

*Null hypothesis is that deviations from Poisson are due to sampling error. 
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If we possessed reasonable theoretical forms for P(δ|M) then we could generalize the 
fitting procedure to include all the genetic data collected from a set of linked nodes.  A 
Bayesian or Maximum likelihood procedure that takes into account both missing links 
and uncertainty in the accuracy of the links could be used to estimate the parameters in 
these distributions22.   A more general approach that is parameter free is based on the 
observation that if δ is a random variable distributed as P(δ|M=1) for a single 
transmission step, and each transmission event represents an independent sampling of the 
genomic distribution in the transmitting host, then δ after M transmission steps is 
distributed as the sum of M independent random variables each independently distributed 
as P(δ|M=1).  Thus for larger M we may write: 
 

P(δ|M=M0>1) = P(δ|M=1) ⊗ P(δ|M=1) ⊗ P(δ|M=1) ⊗……..P(δ|M=1)   (11) 
 
Where the right hand side of equation (11) is the M0-fold auto-convolution of P(δ|M=1). 
Hence, it is only necessary to obtain P(δ|M=1) in order to estimate P(δ|M) for larger 
values of M.  This convolution property is directly reflected in the function forms of the 
Poisson and Negative binomial distributions by the fact that the rate parameters scale as 
γ•M for arbitrary M, where γ is the observed substitution rate for M=1. 
 
A flexible, but computationally intensive parametric approach that can include both 
selection and drift is to develop an explicit simulator for molecular evolution and 
propagation on an outbreak tree.  The simulator would couple replication with errors and 
sampling of the resulting genetic population to initiate infection of a new node and 
subsequent expansion of a new sub-population.   One approach to performing such 
calculations involves using the “quasispecies” propagation equations23-26 , which are a 
simple set of equations governing the growth and diversification of a population of 
genetic sequences by replication and mutation.  (It is important to distinguish the use of 
these equations to describe the transient dynamics of viral populations over finite 
timescales from the use of the infinite time “equilibrium” solution of the equations to 
describe the genetic structure of viral populations24.  We do not advocate the latter 
approach. ) 
 
Figure 5 illustrates some results from a model calculation along these lines, described in 
more detail in Appendix 4.   The three simulations were performed with identical 
transition rate parameters, but very different fitness surfaces.  A striking result is the shift 
of P(δ|M=1) to larger mean values of δ as the fitness surface becomes increasingly 
“neutral” (The model fitness surfaces are shown in Appendix 4).  This dependence of 
genetic drift rate on the size of the “neutral space” occupied by the sequences was first 
recognized by Jenkins et.al., who pointed out that this effect is completely lost if the 
“equilibrium” quasispecies distribution function is used to describe microbial 
populations24.   
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The results in Fig. 5 fit reasonably well to Poisson distributions, but other simulations 
that use different combinations of transition probabilities and fitness surfaces do not.  In 
addition, it is not known what influence the limited number of loci and the somewhat 
arbitrary nature of the chosen genetic distance metric may have had on the form of these 
distributions.  Neither the potential nor the limitations of this type of simulation has been 
fully explored at this point.  Nonetheless, from a comparison of Fig. 5  with actual data 
shown in Fig. 3 it appears plausible that such simulations can capture the underlying 
phenomena in a compelling way27.  Some of the realistic features of viral evolution that 
can be incorporated into such simulations are:   
 
(1) Adaptive (non-neutrality) effects (through modifications of the fitness surface.)   
 
(2) Sampling time effects, t1,t2, and τ  (incorporated through variation in Ngen.)   
 
(3) Selective transmission of particular genotypes (by superimposing additional filtering 
on the basic statistical sampling procedure.)  
 
(4) Multiple infecting virions (sampling two or more genotypes from the initial 
population) 
 

Figure 5.  Results of numerical 
simulations of viral sequence  
change during node-to-node 
transmission caused by genetic 
drift.  Simulation parameters are 
provided in Appendix 3.  
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Currently, our best practical approach to determining P(δ|M) is to fit empirical histogram 
estimates of P(δ|M=1) to Poisson-like distributions, or to use the convolution based 
approach.  Within the next few years it should be possible to develop statistical models 
for P(δ|M) that improve upon the simple Poisson or Negative Binomial forms.  To assist 
this effort, it is reasonable to suggest that better experimental data could be available for 
viruses within the next few years as well.  The “deep” sequencing permitted by modern 
high throughput sequencers has already been applied to elucidating the distribution of 
genotypes within host virus populations28.  Thus, we can expect gradual convergence of 
models and experimental data.     
 
Estimating P(M) 
The sampling distribution P(M) is a function of the size and topology of the transmission 
network that is relevant to the source attribution question at hand.  Here too we can 
obtain a sense of the form of these distributions by considering data from real outbreaks.  
As mentioned above, a transmission network determined by contact tracing is considered 
a random sample from an ensemble of possible trees whose statistical properties reflect 
the epidemiology of that particular disease.  When referring to an estimate of P(M) 
obtained from a particular empirical tree T, we will write P(M|T).   
 
Figure 6 shows P(M|T) for several geographically or temporally separate SARS 
outbreaks.   Some properties of these outbreaks are provided in Table 2.  These local 
outbreaks were part of the larger global outbreak, and each transmission network 
represents a sub-tree extracted from the complete SARS transmission network (large 
parts of which are unknown) by contact tracing29-31.  In order to calculate P(M|T) the 
adjacency matrix of each tree was constructed13.  Then the number of paths of length M 
among the set of nodes was determined by using a result from graph theory that relates 
this quantity to the number of unit matrix elements in successive powers of the adjacency 
matrix.  
  
Table 2.  Properties of some known sub-trees of the complete SARS transmission tree. 

Outbreak Number of 
nodes 

Number of 
generations 

Number of 
“superspreaders” 

Largest 
superspreadng 

cluster size 
TTSH129 

(Singapore) 41 4 1 22 

TTSH229 
(Singapore) 36 3 1 21 

Toronto30 72 5 3 16 
Beijing31 69 3 4 33 

 
Note that each tree has a different number of nodes N and spans a different number of 
generations G.  Besides these two parameters, the detailed form of P(M|T) also depends, 
for example, on the number of “superpreaders” (patients who infect more than 5 other 
patients), and the size of the superspreading clusters.    
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Figure 6.  Path length distribution for four transmission trees sampled from 
the 2003 SARS outbreak. 
  
Since each of the four trees in Table 2 can be considered a random sample from an 
ensemble of possible trees, the observed variations in P(M|T) from tree to tree can be 
considered sampling errors about some average, or most likely, distribution that 
characterizes SARS outbreaks.   Rigorously, since both N and G vary, the appropriate 
ensemble that contains all four of these trees would be one with no restrictions on number 
of nodes or the number of generations.  Therefore the average of the distributions in Fig. 
6 would actually be a biased estimate of the ensemble average, since we deliberately 
restricted the sample set to four trees of a convenient size for manual construction of the 
adjacency matrix, but not too small to be uninteresting.  On the other hand, each tree in 
Figure 6 could separately be used as an estimate of P(M) for the ensemble of SARS 
outbreak trees with the same number of nodes or generations, (or both.)   
 
In most cases, an investigator will not have the actual transmission tree that is relevant to 
the investigation.   However, in many cases, the size of the relevant tree will be known 
with reasonable accuracy, even though the majority of the nodes and their connections 
are not known.  There are then three possible approaches to deriving P(M) in any 
particular case: 
 
(1) Use an empirically determined tree from another outbreak of the same disease where 
contact tracing has been carried out, and whose size is similar to the one of interest, then 
use the same procedure used to generate the data shown in Fig. 6.   This, of course, can 
introduce tree “sampling error” as discussed above. However, there is some evidence that 
the larger the tree, the smaller such errors are.  In any case, we will show later that 
calculations of P(M=1|δ) using equation (9) are not very sensitive to such errors.  It is 
also possible that a tree from an outbreak of a different pathogen could be used as a 
surrogate if the transmission mechanisms are the same, although this remains to be 
proven. 
 
(2) Use an analytical functional form for P(M) whose parameters have been fit to data 
from prior outbreaks of the same or similar disease.  As we will show below, several 
simple models appear to provide close approximations to empirical data. Choosing the 
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appropriate model depends on practical considerations.  For instance, if the relevant size 
(expressed as a number of nodes N and/or the number of generations G) of the tree of 
interest in a source attribution problem is known or can be estimated, the ensemble of 
interest is one in which N, G or N&G is fixed.  In this case we might denote the 
distribution as P(M|N), P(M|G), or P(M|N&G) respectively.   
 
(3) Derive P(M) from simulations of outbreaks on a social contact network that has been 
developed for epidemiological prediction purposes (for that disease).  
 
Approach (1) raises no special technical issues, and is a straightforward extension of the 
network data analysis leading to Figure 6.  Approaches (2) and (3) are currently being 
investigated, and we will now discuss some technical aspects of these last two methods in 
turn. 
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Figure 7.  Empirical and calculated P(M) for various outbreaks using the truncated 
Galton-Watson branching process model. 
 
Method (2) 
A very simple model for a disease transmission tree utilizes the Galton-Watson random 
branching process, in which each node is assigned a certain probability P(d) for 
generating d successor (daughter) nodes32.  The parameters in the model are the 
probability function P(d) and either a maximum number of generations over which the 
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tree is allowed to grow, or a fixed number of nodes.  In appendix 5 an analytical 
expression for P(M|G) for a general truncated Galton-Watson process is derived.    It is 
important to note that this probability distribution describes the statistical properties of an 
ensemble of G-constrained trees each of which has a different number of nodes.  Using 
the results of Appendix 5, we have calculated P(M|G)  and compare the results to data 
from various outbreaks in Figure 7.   This includes two of the SARS outbreaks from 
Table 2, data from the 2003 FMDV outbreak in Great Britain17, and two HIV 
transmission trees33.  The computed distributions are not least-squares fits to the 
empirical data.  Instead, we simply estimated P(d) from the data, and made small 
adjustments to align the center the distribution with the data visually.  It is clear that this 
model captures the basic shape of the empirical data and its variation with the number of 
generations (Note the increasing spread to larger M values as the value of G increases.) 
 
It should be possible to incorporate an explicit fitting algorithm to determine the 
probability parameters for this model directly from the network adjacency matrix.  In 
addition, the predictive power of the model might be improved by at least one other 
modification:  Real outbreaks are typically terminated through the gradual 
implementation of infection control measures.  This may be modeled by changing P(d) 
from generation to generation, until P(0) = 1 for the last generation.  For example, during 
the SARS outbreak, implementation of patient isolation in hospitals essentially 
eliminated the incidence of superspreading events (d > 5) involving health care workers 
by the second or third generation29-31.   
 
The Galton-Watson process does not yield simple analytical solutions when the number 
of nodes is fixed rather than the number of generations.   However, an analytical 
approximation to the path length distribution function for trees defined by a degree 
distribution P(d) and a fixed number of nodes has been derived by Fronczak33.  Figure 8 
compares the Fronczak distribution with two of the empirical SARS distributions.   As in 
the case of the Galton-Watson model, we did not perform a least squares fit, but simply 
adjusted the P(d) values slightly to place the distribution maximum near that of the data.  
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Figure 8. Comparison of the Fronczak distribution with SARS outbreak data. 
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Other factors besides the size and degree distribution are known to affect the statistical 
properties of transmission trees34,35. These include clustering in the underlying social 
network, assortive mixing when there are several distinguishable types of nodes, degree 
correlations between nodes (i.e correlations between the number of infectees generated 
by a node and the number of infectees generated by its parent node) and community 
structure (where the social network consists of two or more tightly connected 
subpopulations linked by a relatively sparser set of contacts.)  More elaborate models and 
functional forms would be required to incorporate these effects. 
 
Method (3) 
The most general approach to estimating P(M) would be to utilize computer simulations 
of disease transmission on large social networks, as illustrated schematically in Figure 9.   
A number of elaborate social network models have been constructed to investigate 
outbreak dynamics and the effect of control measures for many communicable diseases, 
including zoonotics in networks of animal hosts10,11,36-46.  Thus, a variety of ready-made 
models are already available.  Social networks are relatively stable in time and can easily 
be stored as reference data.  Moreover, it is often easier to consider collecting field data 
about the underlying social net, or take advantage of field studies funded through basic 
epidemiological science programs, than it is to directly gather contact tracing data from 
an outbreak.   Thus, this approach, while as yet unexplored, holds considerable promise 
as an operational way to determine P(M) for an outbreak relevant to a forensics case.  
 

 
Figure 9.   A disease transmission network induced on an underlying social net. 
   
 
Some general observations about the proposed inferential framework  
The likelihood estimator given by equation (9) and the underlying probability distribution 
functions possess certain compelling general properties in the context of microbial 
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forensics.  These include the ability to quantify the significance of a sequence “match” or 
“mismatch” between two isolates; the ability to capture non-intuitive effects of network 
structure on inferential power, including the “small world” effect; the insensitivity of 
inferences to uncertainties in P(M); and the concept of rescaling, i.e. ability to collapse 
sub-networks into single nodes and examine transmission inferences  on the rescaled 
network.  In this section we will elaborate on each of these properties in turn.  In the last 
part of this section we will discuss the important issue of choosing a comparison metric δ.  
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Figure 10.  Example calculations of P(M=1|k) vs k.  The parameter a is equivalent to γ in 
equation (11). 
 
 
Genetic Matching  
Figure 10 shows the dependence of P(M=1|δ=k) calculated using the Poisson model 
equation (11) and a truncated Galton-Watson model for P(M).   For the latter model we 
have used the same parameters that were used in the FMDV simulation shown in Fig. 7.   
Figure 10 demonstrates an important feature of microbial genetic inference.  First, note 
that an exact match (δ = 0) does not imply certainty that two isolates are related by direct 
transmission (i.e. P(M=1|δ = 0) ≠ 1 in general.)  Similarly, large mismatch of the 
consensus sequences (δ ≠ 0) may still imply a high probability that the isolates are related 
by direct transmission, if the mutation rate is high enough.     Clearly, the magnitude of 
the mutation rate γ is a critical factor for determining the inferential power of such 
calculations, and the highest power is always achieved when all possible mutations are 
scored over the entire genome.   
 
Small world effects   
Figure 11 shows how the distributions P(M) derived from the Galton-Watson 
(constrained G) and Fronczak (constrained N) models depend on the number of 
generations and number of nodes respectively.  A striking property is the rather slow 
dependence of both distributions on network size. This can be understood from some 
basic properties of random networks.  
 
In network theory a geodesic path is defined to be the shortest path through the network 
from one node to another34.  In tree-like networks there is only one geodesic connecting 
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any two nodes.  The diameter of a network is defined to be the length (in number of 
edges) of the longest geodesic path between any two nodes.  In a transmission tree, 
it is easy to see that the maximum possible geodesic length is 2G, where G is the number 
of generations spanned by the tree.  Thus, in the ensemble of trees defined by a certain 
number of generations, P(M) = 0 for M > 2G.  For a large class of infectious viral 
diseases, typical outbreaks terminate in a relatively few generations, and this effectively 
confines P(M) to be non-zero only at relatively small values of M.   
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Figure 11.  Variation of P(M) with increasing network size.  (a) Fronczak model; 
(b)Truncated Galton-Watson model.  
 
Trees drawn from an ensemble with a fixed number of nodes, but variable numbers of 
generations, also exhibit effective bounds on their diameters.  It is well known that 
random networks defined by a degree distribution P(d) such that <d> > 1 exhibit the 
small world scaling property, defined by the relation   D ≈ ln(N)/ln(<d>) where N is the 
number of nodes. This simply arises from the approximate exponential scaling of the 
number of nodes with the number of generations34.  
 
Many infectious disease transmission networks exhibit both small world behavior and 
superspreader clusters48. Increasing the number of high d clusters within a transmission 
network with a fixed number of nodes reduces the probability of observing pairs of nodes 
connected by a large number of steps.  In fact, when the degree distribution of a network 
has significant probability of having nodes with very large numbers of links, (these are 
sometimes described as “scale free” networks) the diameter exhibits even slower scaling 
with node number.  For example, Bollobas and Riordan49 showed that D ≈ ln(ln(N)) for 
such scale-free networks.   
 
The small world and superspreader effects are important factors in genetic inference 
because they lead to a high likelihood that two nodes randomly drawn from the tree will 
have M which is small compared to the maximum possible diameter of the tree.  In other 
words the prior probability that two randomly selected nodes are related by a small 
number of transmission steps is much higher than one might intuitively believe for a large 
transmission tree.  
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Insensitivity to variation in P(M) 
Figure 12 shows how P(M=1|k) varies with the number of nodes in the transmission 
network.  For these calculations the Poisson parameter γ = 3, and P(M) was calculated 
using the Froczak model for N = 30, 100, 300, and 1000.  The small variation of 
P(M=1|k) indicates a remarkable insensitivity of the posterior probability to the change in 
P(M) as the size of the network increases.   
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Figure 12.  Variation of P(M=1|k) as a function of network size N. 
 
Similar results are obtained when the Galton-Watson distribution is used and G is varied. 
The apparent lack of sensitivity of the posterior probability distribution P(M=1|k) to the 
size of the transmission network can be understood by reference to the explicit form that 
it takes under the assumption of the Poisson form for P(k|M) as shown in equation (12), 
and the properties of the Galton-Watson and Fronczak forms for P(M).   
 

P(M=1|k) = [ ΣM Mk e-a(M-1) (P(M)/P(1))]-1      (12) 
 
Regardless of k, the pre-factor Mk e-a(M-1) is very small for M >3, while the ratio 
P(M)/P(1) remains relatively constant for M≤3 when N ≤ 3000, making (12) nearly 
independent of N over the range examined.  Functional forms for P(δ|M) that shift 
probability to higher values of M will increase the sensitivity to changes in P(M).  
Nonetheless, it seems plausible that uncertainty in the number N or G will not severely 
compromise the inferential power of the method in general. 
  
Rescaling – networks of outbreaks 
Networks of disease transmission often extend over large spatial regions and have long 
durations.  In such networks, sub-networks of infected individuals within cities, herds, 
flocks, and other social groupings can often be considered the infected “nodes” in a larger 
scale network.  Each node defined this way is itself a transmission networks connecting 
individuals, but the intra-node structure is effectively ignored at this scale. This type of 
re-scaling makes sense when these natural groupings are less well connected than the 
individuals making up the social groups that define the re-scaled nodes.  The connectivity 
of the re-scaled network may be very different from that of the underlying network of 
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individuals, so P(M) will differ as well.  It is important to keep in mind that more than 
one of these rescaled nodes may be contained within a particular city, herd or flock, 
because several index cases within those social groupings may have been independently 
infected from distinct sources.  Similarly, a node in a re-scaled network may span several 
geographically distinct regions, if the underlying sub-network does.  
 
As was the case for networks of individuals, transmission hypotheses can be formulated 
and tested on this type of rescaled network as well.  It is necessary to estimate the 
consensus sequence for the population of pathogens contained in the sub-network of 
individuals that constitute a re-scaled node.  Figure 13 illustrates the case where an 
individual victim 
 

 
Figure 13.  Rescaling of a transmission network. 
 
has been infected with a pathogen associated with an extended outbreak, and there is a 
question about which city, herd, etc. was the source of the infecting strain.   Similar 
comparisons can be made when the “victim” is a complex entity itself, i.e. another sub-
network.   
 
Choosing δ 
In the previous sections we have not discussed any specific definitions of the comparison 
metric δ other than the very simple illustrative choice of the number of substitutions k, or 
the similarly defined metric used in the simulations of Fig. 5.   The choice of δ is, of 
course, a critical determinant of the shape of P(δ|M) and the value of the posterior 
probability P(M=1|δ).  
 
A variety of sophisticated metrics can be defined that take into account not only 
substitutions, but also insertions and deletions and other types of genetic change.  Some 
of these are listed in Table 3.  One basic guideline for choosing δ is that the metric should 
be sensitive to changes across the entire genome to optimize the ability of equation 9 to 
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resolve sequence differences.  Whole genome sequencing will also permit unambiguous 
identification of recombination and re-assortment events, which can confound simplistic 
distance measures.  Another, related guideline is that genetic differences be scored 
according to a realistic “biological” model of genetic change.  For example, a deletion of 
n adjacent nucleotides is not simply equivalent to n single nucleotide deletions.  Similarly 
an inverted region should not be scored as a region with a large number of substitutions.  
Ideally, the value of δ should reflect the number of distinct mutational events that 
separate two sequences.  This may not be unambiguous in some events because there 
may be more than one possible sequence of events that cause a particular change in the 
genome.  However, we can expect that improved understanding of mutation rates will 
help decide between alternative evolutionary paths in such cases. 
 
Table 3.  Examples of pairwise genetic distance metrics δ. 

Metric  Characteristic 
Hamming or p distance Takes into account only substitutions 

Ks and Kn Distance measures based on mutations at 
synonymous and non-synonymous substitution sites 

only, resp. 
Edit or Levenstein distance Both substitutions and indels 

Likelihood pairwise alignment distance Based on a model for mutation rates for 
substitutions and indels 

Various phylogenetic branch-length estimators Usually based on a model for mutation rates for 
substitutions and indels 

Hidden Markov Model (HMM) distance Measures HMM likelihood that a strain belongs to a 
given cluster of strains; includes substitutions and 

indels 
Jumping HMM distance HMM distance that includes gene duplications, 

transposons, and inversions 
 
 
A considerable simplification in the calculation of δ arises because, the timescale of most 
outbreaks of diseases of concern in most actual microbial forensics cases, is short.  This 
has two important effects.  First, the total number of genomic changes is generally a 
modest fraction of the number of loci in the genome, even for viruses. This simplifies 
corrections for multiple mutations at a given locus, making “infinite sites” 
approximations reasonable.  Second, it is reasonable to approximate the statistical 
processes that lead to sequence diversification as stationary over the duration of the 
outbreak4.  The stationary assumption amounts to assuming that the mutation rates do not 
change appreciably over the duration of the outbreak.   Similarly, there is an implicit 
assumption that outbreaks of the same disease on the same host type will exhibit similar 
mutation rates.  These related assumptions can only be approximately correct because 
there is considerable evidence for the variation of mutation rates among pathogen 
substrains.  A case in point is the common appearance of “mutator” or “anti-mutator” 
strains among certain pathogens where mutation rates can change by an order of 
magnitude because of mutations in replicase genes.   In any case, we can expect the 
stationary approximation to be most accurate for sequences that are “closely related” to 
the consensus sequence for the population in question.  The effect of non-stationary 
effects on the practical accuracy of our framework can only be established through 
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studies of real outbreaks.   For now we will simply note that this approximation affects 
inferences made by phylogenetic construction methods as well.  
 
3.   Example applications 
 
SARS outbreak, 2003 
The SARS coronavirus outbreak of 2003 was an example of the unexpected emergence 
of a pathogen that had not been previously characterized.  Approximately 8000 people 
were affected worldwide with all cases assumed to originate with one or a few index 
cases in Guandong province in China.   In Singapore, several hundred people were 
infected and extensive contact tracing data has been published, along with whole genome 
sequences for isolates from certain selected nodes (i.e. patients).  Although nearly 100 
full genome sequences of the SARS coronavirus (SARS CoV) are available from NCBI, 
there are fewer than 12 pairs of sequences that are associated unambiguously with 
transmission-linked patients in open literature reporting.  Nonetheless, this data is useful 
for illustrating the application of the framework we have described to a real-world case, 
and especially for indicating how better data sets may be collected in the future.  In the 
analysis presented here we: 
 

 Use a small group of Singapore isolates as a “training set” for P(k|M), and several 
empirical transmission trees as a “training set” for P(M). 

 
 Examine the self-consistency of inferences about the training set made on the 

basis of our inferential framework by applying it to the training set itself. 
 

 Compare the inferential power of our proposed framework to a traditional 
phylogenetic analysis of the same data. 

 
As our “training set” we will consider a set of isolates described in references 15 and 16, 
obtained from  a small group of patients in Singapore for which full sequences are 
available, and which have been related by contact tracing.    
 
The transmission relationships among these isolates implied by contact tracing is shown 
in Figure 14.  Contact tracing suggested that Sin2679 could have been the result of 
infection through an unidentified intermediate patient who had contact with Sin2500, but 
later phylogenetic analysis was more consistent with transmission through independent 
contact with patients infected in the Metropol hotel outbreak.  The isolate Frankfurt1 was 
identified as being derived from a doctor who had treated the patient in Singapore from 
whom Sin2774 had been obtained.   
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Figure 14.  Transmission relationships among fully sequenced isolates from the 
Singapore SARS outbreak. 
 
The data from references 15 and 16 were used to calibrate the number of substitutions per 
node-to-node transmission event, and the Poisson formula (11) was used as an estimator 
for P(k|M).   P(M) was derived from averaging the four distributions in Figure 6, which 
would be appropriate for a network of approximately 50 patients and approximately 4 
generations.  From this model we calculated P(M=M0|k) for each pair of isolates as 
shown in Figure 15.   
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Figure 15.  The estimated posterior probability P(M|k) for various values of k, for SARS. 
 
For each pair of isolates, we performed a pairwise sequence alignment and determined 
the number of substitution differences k. (Indels and other sequence differences were not 
scored.)  For a given k value, the curves in Figure 15 were used to determine the M value 
for which P(M|k) had the largest value.   Figure 15 indicates that P(M=1|k) is the largest 
for pairs with k ≤ 4,  hence those pairs are most likely to be separated by a single 
transmission step.   Figure 16 shows the pairs which were calculated to be most likely 
related by M=1, along with the posterior probability value for this relationship.  The 
highest level of support (0.94) was observed for a direct transmission relationship 
between Sin2774 and Sin2774_P1.  Since Sin2774_P1 was an isolate obtained by 
laboratory passage of the Sin2774 isolate in a vero cell culture, the high level of support 
is not unexpected.  Similarly, the direct transmission relationship between Sin2500 and 
Sin2748 implied by contact tracing  (Fig. 14) is strongly supported (P = 0.88).  However, 
contrary to the contact tracing analysis, Sin2677 is found to be more likely the result of 



A Statistical Framework for Microbial Source Attribution Part 1 
Velsko, Allen, and Cunningham 

April 30, 2009 

29 

direct transmission from Sin2748, rather than Sin2500.  In addition, only weak support is 
found for direct transmission from the Sin2774 to Frankfurt1 (probability ≈30%).   

 
Figure 16.  Predicted M=1 transmission relationships among Singapore isolates.  
Frankfurt1 and Sin2774 were predicted to be at least 2 transmission steps apart.  
 
It is interesting to compare this set of sequences using phylogenetic analysis.  Figure 17 is 
a consensus phylogenetic tree constructed using MrBayes.  The maximum likelihood and 
parsimony phylogenetic construction techniques (using Phylip-3.68) gave essentially the 
same consensus tree.  Included with the isolates of interest are a set of additional 
Singapore isolates whose transmission relationships are less well characterized.  To be 
consistent with the use of only substitution data for determining transmission 
relationships we have performed the phylogenetic analysis on sequences from which all 
regions containing indels have been excised.   One of the striking features of the tree in 
Figure 17 is that the phylogenetic relationships among closely related sequences such as 
Sin2677, Sin 2748, and Sin2500 are evidently difficult to resolve.  In addition, there is at 
least one case in Figure 17 where contact tracing has identified two isolates with a 
common source, but the isolates are genetically closer to each other than they are to the 
putative source isolate.   Thus, phylogenic relationships among the isolates also do not 
generally provide strong support for the relationships determined by contact tracing in 
this case. 
 
In a standard phylogenetic analysis, the close relationship between Sin2774 and the 
Frankfurt isolate would be considered evidence in favor of direct transmission.  In 
contrast, our analysis indicates that it is highly probable (70% vs 30%) that there was at 
least one intermediate transmission step, or that Frankfurt and Sin2774 were infected by a 
common source.  This is a good example of  the ambiguity of phylogenetics with respect 
to source attribution, as discussed in Appendix 1.  
 
 
 
 



A Statistical Framework for Microbial Source Attribution Part 1 
Velsko, Allen, and Cunningham 

April 30, 2009 

30 

 
Figure 17.  A phylogenetic tree using substitution data from Singapore sequences as 
determined by Liu.  Blue and red asterisks mark source and recipient isolates as 
determined from contact tracing. 
  
FMDV outbreak, Great Britain, 2001 
We performed the same type of analysis on sequences and contact tracing data obtained 
during the U.K. FMDV outbreak of 200117.  We used the Poisson representation of 
P(k|M) and the  P(M) distribution from Fig. 7, and calculated P(M|k) for pairs of isolates 
that Cottam, et. al. had identified as direct transmission pairs.  (This is a case where we 
use the P(M|T) derived from a particular transmission tree to represent P(M) for the 
entire class of FMDV outbreaks of that size.)  In some cases, the largest posterior 
probability was obtained for M>1, implying that one or more intermediary transmission 
steps were involved. The resulting transmission tree is shown in Figure 18.  Here inferred 
unknown transmission nodes are indicated by Xs.   
 
One of the limitations of this analysis is that single isolates were used to determine the 
sequence associated with a node (herd), so there is no guarantee that the sequence is a 
valid representation of the consensus sequence for the entire herd.  Therefore, some of the 
“intermediate nodes” implied by our analysis might actually be artifacts caused by 
significant genetic drift within a larger herd that is not taken into account.  Nonetheless, 
our probabilities are reasonably consistent with the transmission chain constructed by 
Cottam et. al., who based their analysis on the overlap of the durations of infectious 
period in each farm.   By using data for the onset and duration of the infection on each 
farm, Cottam calculated a probability for each transmission link.  In Table 4 we compare 
Cottam’s probability with ours for selected links with very high or very low probabilities 
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according to Cottam.    There is generally excellent concordance between the two 
calculations, with one notable exception.  The direct transmission link between nodes K 
and F receives moderate support from our analysis, but Cottam calculates no temporal 
overlap.  One possible explanation is that infection of K was caused by contaminated 
fomites from farm F whose transport to K was not stopped by isolation measures, but 
only delayed.    
 

 
Figure 18.  Reconstructed transmission chain for FMDV based on the data of Cottam, et. 
al.  Xs represent implied intermediate nodes, and the posterior probability values are 
given for each link.   
 
 
Table 4.  Comparison with Cottam, et. al. 

Pair P(t1,t2) P(1|k) 

1-2 0.82 0.92 

I-J 0.99 0.92 

3-A 0.00 0.00 

4-K 0.00 0.11 

K-F 0.00 0.57 

F-G 0.00 0.02 

O-M 0.00 0.00 

 
 
Previous attempts to construct epidemic transmission trees from outbreak data from the 
2001 FMDV outbreak invoked arbitrary assumptions about the time or distance 
relationships between transmission pairs50,51.   The approach outlined above uses only 
genetic data and statistical properties of transmission networks. However, as in the case 
of the SARS outbreak, the paucity of data provides us no independent way to validate the 
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method, and the reconstructed trees in Figs 16 and 18 simply demonstrate the degree of 
self-consistency that can be achieved.     
 
4.  Extension to other source attribution problems 
 
a.  Identifying source reservoirs 
Consider a scenario where an outbreak of a viral disease occurs among humans, and it is 
suspected to be a natural outbreak caused by contact with some localized reservoir.  Viral 
isolates from the initial human victims are obtained along with isolates from the 
suspected source reservoir.   The reservoir isolates could be samples collected directly 
from a natural host sub-population during the epidemiological investigation, or they 
might be samples from one or more laboratories, which had collected previously from the 
natural host sub-population for research purposes.  The genetic sequences of the viral 
isolates are obtained and compared.  How confident are we that the source of the human 
infection was the identified reservoir based on the sequence comparison?    
 
This problem can be addressed by using arguments similar to that leading to equation (9), 
except that the source node is now a rescaled network.  According to Haydon, a reservoir 
can be defined to be one or more epidemiologically connected populations or 
environments in which a pathogen can be permanently maintained and from which 
infection is transmitted to the defined target population52. Thus, zoonotic reservoirs are 
themselves disease transmission networks.   Sub-networks that make up the reservoir 
may be segregated by geographic or social separation (Herd, flock, colony,…) and the 
testable hypothesis H0 identifies the source as a certain sub-network from which the 
infection was derived. (Note that this is not necessarily a geographic construct.)  
 
We seldom (if ever) have complete knowledge of the location and nature of all the sub-
populations that make up the natural reservoir for a disease, or the corresponding 
sequences.   Sparsely sampled genetic data prevents simple “matching” at the most 
interesting local scales.  Therefore, a statistical inference approach based on population 
genetics and network theory is necessary. 
 
Each sub-network (sub-reservoir) that is a potential source is characterized by a sub-
population size NS that reflects the current number of infected hosts within that sub-
reservoir.  We normally have only a few isolates sampled from individual hosts (or 
perhaps vectors) whose transmission relationship is unknown.  If we compare the 
sequences from the victim and each reservoir isolate, we can calculate a δ value for each 
comparison, and find δmin, the smallest observed difference among the set.  The 
probability that the victim’s infection came from the sub-reservoir in question is given by 
P(M≤D0|δmin)  where D0 is the diameter of the sub-network.    
 
To calculate this quantity we need an estimate of the total size of the population that 
could be harboring the pathogen – i.e. all natural hosts of the pathogen over the entire 
world (the “grand reservoir” with population NT), as well as an estimate of the size of the 
subpopulation of hosts in the suspect sub-reservoir NS.   The diameters48 of the grand 
reservoir and sub-reservoir are given by: 
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DT ≈ ATloge(NT)       

 
DS ≈ ASloge(NS)       

 
AS and AT are of order 1 and depend on the network topology; note that the topological 
properties of the grand and sub-networks might be somewhat different.  However, due to 
the “small world” property, D is not very sensitive to the choice of N.   
 
The probability that the victim’s infection came from the sub-reservoir is then: 
 
P(M≤DS|δmin) = P(δmin|M≤DS)P(M≤DS)/[P(δmin|M≤DS)P(M≤DS) +     
        P(δmin|M≥DS)P(M≥DS)] 
 
Where the definition of each factor is analogous to that in equation (9).   Note that the 
relevant P(M) is that for the grand reservoir, and the sums for M≥DS go from DS + 1 to 
DT.   
 
b.  Intentional versus natural outbreaks 
Emerging disease outbreaks are often the consequence of changes that increase the 
contact between humans and reservoirs in the wild that harbor the unknown pathogen.  
However, outbreaks of such diseases often raise public questions about the possibility 
that they are due to bio-terrorism.  From a network point of view, a large number of 
infections caused by independent interactions with a natural zoonotic reservoir is easily 
distinguished from a large number of infections from a common source such as a single 
laboratory produced culture.   Referring to Figure 19 the genetic distance values between 
pairs of victim isolates in the latter case will be consistent with step separations of M≤ 2, 
while victim isolates from independent contacts with a natural network will exhibit high 
probabilities of M>2.  Note that an isolate from the putative reservoir is not needed to 
draw this conclusion.   Obviously, there may be cases where the natural source of an 
outbreak is a single infected host from the reservoir, and conversely, a terrorist might 
deliberately mix isolates from many host animals, but simple tests such as this will still 
be a useful adjunct to standard epidemiological investigations.  
 

 
Figure 19.   Distinguishing a deliberate biological attack using an isolate obtained from a zoonotic reservoir 
from multiple infections due to independent contacts with that reservoir.   
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c.  Recombination and re-assortment events 
For influenza and certain other viral diseases, re-assortment or recombination events of 
concern occur in nodes that have been infected from two distinct networks, in particular 
networks that involve different species.  A node in which recombination or re-assortment 
has taken place may then be the initial node in a new, distinguishable outbreak network.  
The analysis of such strains is complicated by the need to identify the sub-sequences in 
the new strain that are likely to belong to each of the original networks (i.e. species.)  
Once this has been done, the framework can be used on each genomic segment 
separately, to test the hypothesis that any two particular suspect reservoirs/outbreaks were 
the sources of the recombining strains.  If the most likely suspect reservoirs are unlikely 
to have a natural route of contact, it might indicate an artificial (i.e. man-made) origin for 
the event.   
 
5.  Foundations for a Microbial DNA Indexing System (MIDIS) 
Several authors concerned with microbial forensics have discussed the need for a forensic 
archive and genetic database of pathogens of concern53-55.  However, a database by itself 
is of limited utility in the absence of appropriate algorithms for comparing genetic 
profiles and assisting the investigator in making decisions about the likelihood that there 
is a case-relevant relationship between two isolates, or providing information on where 
additional related samples might be collected for genetic characterization.  The 
framework outlined in this report provides a basis for such algorithms, and can be 
incorporated into a concept for an electronic case support system analogous to the 
CODIS system for human DNA56. 
 
The Microbial DNA Index System (MiDIS) concept shown schematically in Figure 20 is 
a decision support tool to help investigators narrow the range of possible sources of a 
bacterial or viral agent that was used in a criminal or bioterror incident.  While it is 
similar in spirit to the CODIS system, its inferential power and utility differ from CODIS 
in several ways.  In particular, MiDIS  
 

☞ Provides a systematic way to identify genetically characterized isolates that are 
most closely related to the attack strain 

 
☞ Provides explicit statistical measures to quantify the probability that the attack 

strain was derived from a suspect source strain under an explicit hypothesized 
scenario for acquisition and propagation of the agent.   

 
☞ Provides guidance for identifying geographical regions or laboratories where 

additional isolates that may be closely related to the attack strain may be 
collected. 

 



A Statistical Framework for Microbial Source Attribution Part 1 
Velsko, Allen, and Cunningham 

April 30, 2009 

35 

 
Figure 20.  Schematic representation of the MiDIS system 
 

MiDIS does not purport to identify sources.  As in the case of CODIS, the output of 
MiDIS is primarily used to assist investigation; it provides only one part of the 
information needed to establish attribution.   The MiDIS concept as presented here 
formally implements the probabilistic framework presented in this report. 
 
An important feature of the MiDIS concept is that for each pathogen estimates of P(δ|M) 
and P(M) are generated from data culled from past outbreaks using one or more of the 
methods described in section 2.  Where no data is available, or a novel pathogen is 
involved, similarity classes with known pathogens are established and used to make the 
estimates.   Comparisons between case and reference samples, or among case samples are 
ranked by posterior probability metrics such as equations (8),  (9) or (10) which provide 
the investigator with weight-of-evidence estimates for the support given to various 
hypotheses about the provenance of the pathogen in question.   
 
MiDIS data base standards 
The development of MiDIS would necessitate establishing standards for including or 
rejecting data, or weighting them with respect to certainty.  Note that these standards are 
most critical for transmission network data established by classical contact tracing 
methods.  Eventually it may be possible to influence the field collection of outbreak data 
by providing recommendations to the CDC and international disease investigation teams 
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for the number and types of isolates to be collected during a reference outbreak, and the 
kind of metadata that should accompany a sample.  Similarly, MiDIS standards for 
genotyping could be established to control the genomic regions that are sequenced, the 
error tolerances, and recommendations concerning the number of clones sampled from a 
given isolate.  Any assumptions used in MiDIS calculations should always be 
conservative, in the sense of favoring the defense.  
 
6.  Strategies for validation  
 
The operational utility of the methods developed in this report, the forensic admissibility 
of the results generated by their use, the credibility of conclusions drawn from the results 
to the scientific community and to policymakers, and the value of a MIDIS-like system to 
guide the investigation of a bio-terror or criminal incident, all depend on an extensive 
program of validation.   
 
The most fundamental assertion that requires validation is the ability of models for 
P(δ|M) and P(M) that are parameterized on one data set to accurately reproduce the 
empirical distributions derived from independent data sets obtained from other outbreaks 
of the same disease.  To do this, it will be essential to improve the coordinated collection 
of coupled epidemiological and genetic data from real outbreaks and increase the number 
of such studies.   In the case of contact tracing, confidence levels associated with 
transmission events should be reported, so that these uncertainties can be formally folded 
into the statistical analysis of the data.  Large enough data sets should be collected to 
permit the use of cross-validation and bootstrapping in evaluating empirical distributions.   
Modern high throughput sequencing technologies should be employed to determine the 
full genome sequences of all collected viral isolates. Sequencing error should be 
controlled by the use of high-depth coverage of each sequence. 
 
A much more detailed understanding of the uncertainties introduced by unknown 
variation in times between infection and transmission, and between infection and 
sampling must be obtained.  Experimental studies using animal models and in-vitro 
systems may be used to fill gaps that remain when there are only a limited number of 
field outbreak studies.   It should be relatively easy to minimize uncertainties regarding 
transmission relationships under controlled laboratory conditions.  Animal 
transmission/passage models already exist for a number of airborne infectious diseases, 
such as the ferret model for influenza57 and Rhesus Monkey models for SARS58.  Of 
course, the best animal models for determining transmission related statistical 
distributions may be different from those used for vaccine development and other kinds 
of studies.  Important considerations are the levels of viral loads developed during 
infection, the expression of symptoms conducive to transmission, and similarity between 
the routes of transmission and infection between humans versus the animal models.  In-
vitro passage experiments can be used to determine fundamental rate parameters in cases 
where there is no data from direct host-host transmission experiments.   
 
Additional confidence in inferential methods may be obtained from sensitivity studies 
using simulations that couple disease propagation with mutational change.    In this 
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context it is interesting to note that these simulations use the same evolutionary models 
that are used in many phyologenetic construction methods.  Simulations are valuable in 
assessing answers to a number of “what if” questions when no directly applicable data is 
at hand.   
 
Finally, further study of the statistical and mathematical foundations can provide 
increased confidence in the validity of the framework we have presented.  For example, it 
remains to develop a theoretical basis for the functional form of P(δ|M=1).   The method 
of constructing P(δ|M) for M>1 using the convolution principle mentioned in section 2 
needs to be tested against empirical data.   The remarkable insensitivity of the posterior 
probability P(M=1|δ) to P(M) over a wide range of network size needs to be investigated 
further to understand the degree of generality of this phenomenon.   A formal treatment 
of the effect of sequencing and epidemiological errors remains to be developed. 
 
7.  Concluding remarks 
 
An underlying theme in the framework presented in this report is that the most likely unit 
of concern in microbial forensics is the outbreak.  A pathogen used in a bioterror incident 
or crime will most likely be one whose origin was ultimately a distinct, known historical 
or contemporaneous outbreak.  Most isolates in pathogen collections are sampled from, 
or associated with, recognized human or animal outbreaks.   Chances are that someone 
trying to obtain a pathogen from a natural source will obtain it during an outbreak.  This 
is because infectious disease outbreaks in humans or domestic animals are generally the 
most visible, noted, and tracked expansions of pathogen populations.  Our framework 
provides a quantitative method for linking any pathogen isolate to a particular outbreak, a 
sub-tree of that outbreak, or to an infected node within that outbreak.  It is important to 
recognize that this is the strongest kind of inference that can be made about the origin of 
an isolate used in a bioterror incident that is possible from genetic data alone.  
 
The key to our proposed framework for microbial genetic inference is the recognition that 
an outbreak at any scale consists of a network of infected nodes, and that the statistical 
properties of the network determine, to a large extent, the structure of the microbial 
population within the outbreak.  In this framework it is possible to derive “pathogen 
paternity” equations that permit statistical inferences regarding source hypotheses, and 
quantitative forensic inferences require explicit consideration of the statistical properties 
of disease transmission networks.   Phylogenetic arguments alone cannot generate 
quantitative inferences about sources and transmission events. 
 
This deductive framework provides a basis for a CODIS-like database for analyzing 
microbial evidence, permits quantitative statements to be made regarding the 
differentiation of natural from intentional events, and can be extended to include 
inferences about particular animal reservoirs being sources of natural outbreaks.  The 
method can be extended to include tracking concepts based on the genotyping of non-
pathogenic (commensal) microbial populations within humans. 
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Although sufficient coupled genetic-epidemiological data is available to demonstrate 
applications of this framework to a variety of source attribution problems of forensic 
interest, rigorous validation will require deliberate and systematic collection of additional 
data.  The framework also helps provide guidance for such an effort.  With the spread of 
“next generation” sequencing technologies, collecting the required volumes of sequence 
data will be feasible and cost-effective.    
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Appendix 1. 

Limitations of phylogenetic construction for microbial genetic inference 
 
Phylogenetic approaches constitute the primary methods that have been proposed for 
inferring transmission trees from genetic sequences of isolates sampled from an outbreak.   
Slatkin and Maddisona1.1 proposed a method for reconstructing a transmission history 
from the phylogenetic tree determined by a set of geographically labeled isolates.  This 
method has been refined and modified by Wallace, et. al. to retrospectively reconstruct 
the historical transmission of H5N1 influenza across the globea1.2.  Cottam and co-
workers have considered how to meld phylogenetic information with epidemiological 
records of infection times and the duration of infectious periods in order to infer the 
transmission history of the 2001 FMDV outbreak in the United Kingdoma1.3.  
Phylogenetic methods have been used to support crimimal prosecution in HIV 
transmission cases, and the use of phylogenetic trees as evidence for the “close 
relationship” of HIV isolates has been declared admissible under Dauberta1.4.  However, 
in spite of the general acceptance of phylogenetic constructions as inferential tools, all 
applications of phylogeny to microbial source inference suffer from one or more of the 
following limitations: 
 
(1) They implicitly assume that all possible infectious nodes have been identified and one 
or more sequences are available for each node in a contiguous transmission tree so that 
inference is occurring on a closed set of possible nodes.  When this assumption is not 
true, the inferential power of a tree is restricted to statements that a pair of isolates is 
genetically closer to each other than to other isolates in the compared set, that the 
construction provides a measure of genetic similarity between two isolates in the set (e.g. 
the sum of the branch lengths to the most recent common ancestor,) and that there is an 
inferred common ancestor sequence for any pair of sequences in the compared set.    
 
(2) An ancestral sequence identified for two isolates cannot be placed in any particular 
node without some additional information or assumptions, either times associated with 
transmission events, or evidence excluding the possibility of additional uncharacterized 
nodes. When the complete set of nodes is not available, an observed phylogenetic 
relationship may be consistent with many alternative transmission trees.  Similarly, 
several phylogenetic patterns may correspond to the same transmission history.  Table 
A1.1 illustrates alternative transmission relationships that are consistent with a given 
phylogeny.  Conversely, Figure A1.1 is an illustration from Resik, et. al. showing 
alternative phylogenies that are consistent with the same transmission relationshipa1.5.   
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Table A1.1  Alternative transmission trees consistent with a given phylogeny. Encircled 
regions indicate which node the most recent common ancestor resides in.  U1 and U2 
correspond to unsampled (possibly unknown) nodes in the transmission tree, or nodes for 
which genetic information was not available. 
 

 
 
 
(3) Confidence levels are expressed as the ratio of the likelihoods of the most to the next-
most probable trees. The likelihoods themselves have no obvious relationship to the 
probability of the event in question (i.e. the transmission event) and generally provide 
only a relative measure of confidence that similar data would produce a similar tree.  
 
A common misperception is that phylogenetic constructions based on isolates from 
known viral transmission trees provide support for the use of such constructions for 
deducing transmission relationships.  The classic paper by Leitner on HIV is often 
citeda1.6.  In fact, this perception is erroneous, being a clear case of the fallacy of 
exchanging the conditional.   If Φ  represents a phylogenetic construction, and T  a 
transmission tree relating a set of genetic sequences, then comparisons such as Leitner’s 

(Resik, et. al., 2007) 
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provide a measure of P(Φ |T ), not P(T |Φ).   Moreover, it is not widely appreciated that 
several papers, including Leitner’s can be interpreted as demonstrating (perhaps 
inadvertently) that P(Φ|T) is, in fact, low.  (In Leitner, 14 out of 14 proffered 
phylogenetic constructions were in error in at least one branch.)  
 
References for Appendix 1 
 
a1.1  Slatkin M, Maddison WP, Genetics. 1990 Sep;126(1):249-60.    
 
a1.2   Wallace RG, Hodac H, Lathrop RH, Fitch WM, Proc Natl Acad Sci U S A. 2007 
Mar 13;104(11):4473-8. Epub 2007 Mar 7. 
 
a1.3   Cottam EM, Thébaud G, Wadsworth J, Gloster J, Mansley L, Paton DJ, King DP, 
Haydon DT, Proc Biol Sci. 2008 Apr 22;275(1637):887-95. 
 
a1.4   Budowle B, Harmon R.,  Croat Med J. 2005 Aug;46(4):514-21. 
 
a1.5   Resik, et. al., AIDS RESEARCH AND HUMAN RETROVIRUSES 23(3), 2007, 
pp. 347–356. 
 
a1.6 Leitner T, Escanilla D, Franzén C, Uhlén M, Albert J.,  Proc Natl Acad Sci U S A. 
1996 Oct 1;93(20):10864-9. 
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Appendix 2 
The complete joint sampling distribution P(δ, t1, t2, τ , M) 

 
In this appendix we derive equation (0) in the main text. 
 
Consider the complete joint sampling distribution that provides the probability of 
observing a particular genetic distance for a pair of isolates that were sampled at times t1, 
t2, and τ, and separated in the tree by M steps.  The distribution is defined over the 
ensemble of outbreak trees for a particular infectious disease and the ensemble of 
possible isolate sampling times.   It can be written in terms of the conditional probability 
for observing δ given t1, t2, τ and M as: 
 

P(δ, t1, t2, τ, M) = P(δ| t1, t2, τ, M) P(t1, t2, τ, M)      (A2.1) 
 

= P(δ| t1, t2, τ, M)P(t1)P(t2)P(τ)P(M)    
 
where the second equation follows under the assumption that the sampling times and M 
are presumably independent and uncorrelated. 
 
We can integrate over the times t1, t2, and τ (which could be considered “nuisance 
variables” in our problem) to obtain the joint distribution of δ and M: 
 

P(δ, M) = ∫∫∫ P(δ, t1, t2, τ, M)dt1dt2dτ     (A2.2) 
 
Substituting (A.2.1) into (A.2.2) gives: 
 

P(δ, M) = ∫∫∫ P(δ| t1, t2, τ, M)P(t1)P(t2)P(τ) dt1dt2dτ P(M)    (A2.3) 
 
By comparison with equation (0) in the main text we see that: 
 
 

P(δ|M) = ∫∫∫ P(δ| t1, t2, τ, M)P(t1)P(t2)P(τ) dt1dt2dτ     (A2.4) 
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Appendix 3 
Fitting the Negative Binomial distribution to substitution data 

 
The negative binomial is often used to fit count data when the variance exceeds that 
expected for Poisson statistics.  It is well known that the negative binomial is the 
distribution for a sum of random variables each of which is Poisson distributed, but with 
different rate constants.   (It is assumed that the rate constants are distributed according to 
a gamma distribution.)  Thus the negative binomial is one of a class of “overdispersed” 
counting distributions.  To determine the parameters, we fit our data using the R online 
software (Wessa, P.  (2009) Free Statistics Software, Office for Research Development 
and Education, version 1.1.23-r3, URL http:www.wessa.net/  )  This fitting routine 
returns the parameters µ and “size” as recorded below for the four data sets fit in section 
2.   
 
Data Set µ size 
SARS 4.1 ± 1.17 3.2 ± 3.7 
FMDV 4.3 ± 0.5 358 ± 3229 
HIV env 1.84 ± 0.19 4.3 ± 2.7 
HIV gag 2.04 ± 0.47 1.11 ±0.57 

 
There are various forms for the Negative Binomial distribution.  One common form 
isA3.1: 
 

P(k|µ,κ) = [Γ(k + 1/κ)/k!Γ(1/κ)] (κµ/(1 + κµ)k  (1/(1+κµ))1/κ    
 
Here κ = 1/size.  
 
Another version of this distribution is3.2: 
 

 
 
where r = size + 1 and p = size/(size + µ). 
 
For computations of P(k|M) we use the result derived for sums of independent, equally 
distributed Negative Binomial random variables derived by FurmanA3.3.  According to 
that paper, we can simply replace size → M•size in the above forms to obtain the 
required distribution.  
 
 
A3.1. Lloyd-Smith JO (2007) Maximum Likelihood Estimation of the Negative Binomial 
Dispersion Parameter for Highly Overdispersed Data, with Applications to Infectious 
Diseases. PLoS ONE 2(2): e180. doi:10.1371/journal.pone.0000180 
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A3.2. Cook, JD, Notes on the Negative Binomial Distribution, October 8, 2008; available 
on the Internet at www.johncook.com/negative_binomial.pdf 
 
A3.3. Furman E, “On the convolution of the negative Binomial random variables”, 
Statistics & Probability Letters 2007; 77:169-172. 
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Appendix 4 
Evolution equation approach to calculating P(δ |M=1) 

 
 
The calculations leading to Figure 7 in the main text were performed using a discrete 
form of the “quasi-species equations” which relate the number of microbes with genetic 
sequence i found in a population to the probabilities of mis-copying (changing genotype i 
to a different genotype j and vice-versa) and the “fitness” of each genotype measured in 
terms of an effective reproduction number: 
 
 

Ni(Ngen+1) – Ni(Ngen) = Fi Ni(Ngen) – Σj≠iQij Ni(Ngen) + Σj≠iQji Nj(Ngen)   (A4.1)    
 
where  

Ni is the number of microbes with genotype i 
Ngen = the number of generations 
Fi = the effective reproduction number (the fitness) 
Qij = the transition matrix containing the probabilities of genotype i changing to j. 

  
 
A set of coupled “quasi-species equations” is equivalent to (A4.1) with an expression for 
the total population of microbes N = ΣiNi: 
 
 

N(Ngen+1) = (1 + Φ(Ngen))•N(Ngen)      (A4.2) 
 
where Φ(Ngen) is the “population fitness” defined as: 
 

Φ(Ngen) = ΣiFi[Ni(Ngen)/N(Ngen)].      (A4.3) 
 
The fraction of the total population with genotype i is simply  
 

xi(Ngen) = Ni(Ngen)/N(Ngen)       (A4.4) 
 
The equations are solved subject to an initial condition on the distribution of genotypes in 
the initial population {xi(Ngen=0)}. 
 
To generate the data shown in Figure 12 we assumed a 3 locus “genotype” in which each 
locus has 5 alleles.  This generates a 125 (53) member sequence space.  Each locus was 
given an identical allele-to-allele transition matrix shown in figure A4.1.  Three different 
profiles for the fitness surface {Fi} were used in the three simulations A, B, and C, as 
shown in Figure A4.2.   
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Starting with some arbitrary genotype we propagated equations (A4.1) – (A4.4) to 
generate an initial population of genotypes within that sequence space.  This population 
represented the population of genotypes found in an initially infected node (the 
“infector”).  We then randomly selected a genotype from that population and used it as 
the initial genotype for a second propagation representing infection of the second node 
(the “infectee”).  The probability of selecting a seed genotype was weighted according to 
the fraction xi of each genotype in the infector population.   In each case, propagations 
were performed for 30 generations.  This was generally far short of the number of 
generations needed to achieve the asymptotic “quasispecies population”.  

Figure A4.1.  Transition matrix from allele state to allele state at each locus.  The 
genotype to genotype transition matrix Qij is generated using the function 
Qij = Π l γ(a(l,I),a(l,J)) where a(l,J) is the index of the allele state associated with locus l 
in genotype J.  
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Figure A4.2.  Fitness surfaces used in simulations A, B and C.  The abscissa represents 
genotypes 1 – 125 in numerical order, beginning with genotype (1,1,1) and ending with 
genotype (5,5,5).   
 
Two hundred (200) random samples were generated from the initial population, and 
propagated to obtain that number of “infectee” populations.   For each population so 
generated, the consensus allele at each locus was generated by adding together all xi such 
that genotype i had allele l at that locus and then choosing the allele with the largest sum.   
The allele based Hamming distance between the consensus sequences of the initial 

a1 a2 a3 a4 a5

a1 9.70E-01 3.00E-02 0.00E+00 0.00E+00 0.00E+00

a2 3.00E-02 9.40E-01 3.00E-02 0.00E+00 0.00E+00

a3 0.00E+00 3.00E-02 9.40E-01 3.00E-02 0.00E+00

a4 0.00E+00 0.00E+00 3.00E-02 9.40E-01 3.00E-02

a5 0.00E+00 0.00E+00 0.00E+00 3.00E-02 9.70E-01
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“infector” population and the 200 “infectee” populations was calculated as the sum of the 
absolute difference between allele states (1-5) over the three loci:  
 

δ = Σl|a0l – afl|       (A4.5)  
 
In this equation, a0l and afl are the allele states at locus l for the consensus sequences of 
the infector and infectee populations, respectively.  
 
Consider the set of all genotypes generated by a multiple locus, multiple allele model of a 
microbial genome.  Equations A4.1 represent a mapping from this space of all genotypes 
{g0} to a smaller subset of consensus genomes {gc} (which are, of course, members of 
the original set.)  Consider the function  
 

F(gc|g0,Ngen,F,Q)  =  {1 if g0 → gc, 0  otherwise}   (A4.6)  
 
Here F and Q represent the fitness surface and transition probability matrix respectively.  
For the simulation described above, the probability of observing an infectee with a 
consensus genome gc, when his infector hosts a population of genotypes with a 
probability distribution P(g0) is: 
 

P(gc) = Σ F(gc|g0,Ngen,F,Q) P(g0)    (A4.7)     
 

where the sum is over all g0.  Since each g0 maps uniquely to one gc, we have the formal 
normalization condition  
 

Σ F(gc|g0,Ngen,F,Q) = 1      (A4.8)  
 
Where the sum is over gc.  This ensures that P(gc) is normalized if P(g0) is.   Thus, if we 
had an efficient way to calculate F(gc|g0,Ngen,F,Q) then (A4.7) would provide an analytic 
solution that could replace our simulation.   
 
In the case of a flat fitness surface (Fi = constant for all i) simulations imply that the 
consensus sequence of the population generated by any input sequence g0 will be equal to 
g0.   It is likely that this can be proven rigorously by consideration of the properties of 
F(gc|g0,Ngen,F,Q).  When the fitness surface has a peak at gp, and we allow Ngen to 
become very large, we expect P(gc) ≈ 1 for gc = gp and negligeable otherwise.   This 
observation was made previously by Jenkins, et. al. [Mol. Biol. Evol. 18(6):987-994 
(2001)].    
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Appendix 5. 
P(M|G) for the truncated Galton-Watson model 

 
The Galton-Watson process is a simple way to generate transmission trees which mimic 
the form of real disease transmission trees in many ways.   For Galton-Watson trees, the 
numbers of daughters d of each node are statistically independent but obey the same 
probability distribution Pd.  In the absence of a constraint on tree size, this model defines 
an infinite collection of possible trees some of which may be infinite in extent if the 
probability parameters meet certain conditions.  Here we are primarily concerned with 
trees constrained to have a fixed number of generations G, so that all trees have a finite 
(but possibly large) number of nodes.  Under the assumption of statistical independence 
of the nodes, determination of the statistics of the path length M between any two nodes is 
straightforward and avoids the combinatorial explosion that might be feared of a 
collection of large trees.   
 
Consider first the average number of nodes in such trees.  Averages over a statistical 
ensemble of trees are indicated by italics. The average number of daughters of a given 
node is: 
 
 d = Σd d Pd (A5.1) 
 
A node with d daughters has s=d(d-1)/2 sibling pairs.  Suppose them to be ordered with 
older sibling first.  The average number of ordered pairs is 
 
 s = Σd d(d-1)/2  Pd (A5.2) 
  
This statistic is an important determinant of the path-length distribution. 
 
Each tree has a single root node.  The number of generations g to a nodes is its path 
length from the root node.  The expected number of nodes at generation g is d g; so the 
expected total number of nodes for a tree with a maximum of G generations is 
 
  N = ΣGg=0 d g =  (1–d G+1) /(1-d) (A5.3a) 
 
This holds whether d<1 (subcritical), or d>1 (supercritical).  We shall use the ‘average for 
unconstrained trees’ Nu for the term (1-d)-1 when discussing trees with fixed G. 
 
 Two distinct nodes A, B have a unique nearest common ancestor C.  If neither A nor B are 
C, they are elements or descendents of exactly one sibling pair S of C.  Let the pair (A,B) 
be ordered such that either A is C or A is a descendent of the elder sister in S.  The path 
length M is the sum of the lengths a and b of A and B from C.  These can be related to the 
generations of the nodes 
 
 M = a + b (A5.4a) 
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 a = g(A) – g(C)  (A5.4b) 
  
 b = g(B) – g(C)  (A5.4c) 
 
 
If the number of generations has a limit G, the average number of paths for a common 
ancestor of generation g is 
 
 np(M,g) = s d M-2 (M-1) + d M         :  M ≤ G–g (A5.5a) 
 
              = s d M-2 [2(G–g)–M+1]   :  G–g< M ≤ 2(G–g) (A5.5b) 
 
(A5.5a) is equivalent to (6).  (A5.5b) results from the constraints g+a ≤ G, g+b ≤ G.  The 
average per tree is the sum over generations g, each with d g average members: 
 
 Np(M) = ΣG-1g=0 np(M,g) d g (A5.6) 

While (A5.5) is simple to evaluate numerically, a closed-form solution exists. The series 
contains only terms proportional to d g and gd g, so can be evaluated using (8), although 
the non-analytic behavior of np(M,g), evident in (A5.6), demands patience.  The result is 
 
 Np(M) = sNu{dM–2(M–1) + dG+h–1 [2dNu(1–d –h)+e]} +  Nu(d M–d G+1) :  M ≤ G (A5.7a) 
 
  Np(M) = sNu{dM–2[2(G–dNu)–M+1] + dG+h–1(2dNu+e)}               :  G < M ≤ 2G (A5.7b) 
 
 e(M) = {1: M even ;  0: M odd}  ;    h(M) = gif( M/2 )   ;  Nu = (1–d)–1    (A5.7c) 

The non-analytic functions e(M), h(M) in (A5.7c) are required due to the kinked nature of 
the paths: they fit within the constrained number of generations more easily for even M.     
gif( x ) is the greatest integer less than or equal to x.  

The probability distribution P(M|G) can be found by normalizing Np(M) by its sum, as in 
(7). An exact closed-form representation should exist, but is unlikely to be simple, or 
more insightful than (5.7), which gives the shape of P. 

Np(M) has a maximum for Mm < G.  In the limit of large M, Nu the dominant terms of 
(A5.7a) are 
 
 Np(M) ~ s Nud –2{ M d M – 2Nud G+2 (1–d M/2)}  (A5.8) 
 
Therefore, the maximum probability occurs at Mm for which  
 
 (d/dM) Np(M) = sNud M–2 {M lnd + 1 + D d G+2 lnd d –M/2} = 0 (A5.9) 
 
With  d–M/2~ 1–½M lnd and lnd~d–1, this has the approximate solution 
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 Mm ~ (1–d G+2)/(1–d)(1+½ d G+2) = (N+d G+1)/(1+½ d G+2)  (A5.10a) 
 
 N = 1+d+…+d G = (1–d G+1)/(1–d)  (A5.10b) 
 
Thus, for large subcritical trees, the maximum occurs for the number of nodes N reduced 
by the factor (1+½ d G+2). 
 
These results are illustrated in Figure A5.2, where we plot Np(M) for Poisson trees with  
 Nu=64, constrained by several values of G.  Equation (A5.10) is seen to be a good 
approximation for the positions of the maxima Mm.  For example, with G=32 the expected 
number of nodes is N=26 by (5.10b), but the maximum is in fact somewhat less than the 
value Mm=20.5 of (5.10a). 
  

 
 
We see that the path length distributions are substantially altered by the constraint on 
number of generations, even, in the subcritical case, for G > 2Nu –  twice the expected 
number.  (Since d~1, the expected numbers of nodes and generations are similar.)  This 
implies that relatively rare trees with large numbers of nodes contribute substantially to 
these distributions.  Perhaps this should not be surprising given the inherently quadratic 
dependence of node pairs on nodes, but it is still worth remembering that mean quantities 
may be misleading. 
 
These examples illustrate a prominent feature of Galton-Watson trees: the path length 
distribution peaks at a length commensurate with the number of nodes in the tree.  They 
also show that the statistical simplicitly of these trees makes mathematical analysis of 
them tractable.  The computer simulations which we performed were intended simply to 

0

100

200

300

400

500

600

700

800

0 20 40 60 80 100

Path length M

A
v

g
. 

p
a

th
s

 p
e

r 
tr

e
e

 N
p

(M
)

G=large

G=128

G=64

G=32

Max

Nu= 64

 



A Statistical Framework for Microbial Source Attribution Part 1 
Velsko, Allen, and Cunningham 

April 30, 2009 

56 

verify analytic results in simple test cases.  Indeed, it would be difficult to obtain our 
results for large trees computationally. 
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Appendix 6. 

Estimating P(δ |M) from empirical or simulated disease transmission 
data 

 
Imagine that we have a transmission tree and genetic data for each node.  Ideally, this 
data would originate from a well-designed and executed study of a real outbreak.  
However, it could also come from a simulation.  We can define two matrices, the {Mij} 
matrix which has the known path-length distance between each pair of isolates, and the 
{δij} matrix with the corresponding genetic distances.   The empirical transmission tree is 
a single sample of the population of trees, and can be used to provide an estimator for 
P(M).  In this sense, when we draw a sample ij from the {δij} matrix we are basically 
sampling P(δ,M) for that outbreak (or simulation).  Thus, a histogram of δ for all the 
pairs that had M = 1, is an estimator of the joint probability distribution P(δ,M=1).  
Similarly, a histogram of δ for all pairs that had M>1 is an estimator for P(δ,M>1).   
 
By the same reasoning, the estimators for P(M=1) and P(M>1) are:  
 

P(M=1) = (# of matrix elements for which Mij = 1)/(total # of matrix elements)  (A6.1) 
 
and 
 

P(M>1) = # of matrix elements for which Mij>1/total # of matrix elements     (A6.2) 
 
To obtain estimations of the conditional probability distributions that can be used to 
generate a ROC curve we simply use the relations:   
 

P(δ|M=1) = P(δ,M=1)/P(M=1)     (A6.3)  
 
and 
 

P(δ|M>1) = P(δ,M>1)/P(M>1)    (A6.4) 
 
This procedure provides an exact estimate of P(δ|M) for any M if all the data is “fully 
connected” i.e. each node for which there is genetic data is part of a fully connected 
transmission graph.  In reality, the empirical data typically obtained from an outbreak 
(say for the Singapore SARS outbreak) is fragmented, i.e. there are isolates from isolated 
pairs of direct transmission-related nodes and larger tree fragments, and isolates from a 
some number of isolated nodes with no known connectivity to the other nodes.  We 
generally also have some larger transmission sub-trees determined by contact tracing, but 
genetic data for only a few nodes from these trees, without necessarily knowing which 
nodes on the tree they are from.   Currently there is no statistically valid (even 
approximate) method for “correcting” real outbreak data for this problem in order to 
directly estimate P(d|M) for arbitrary M. Strictly speaking it is not even valid to simply 



A Statistical Framework for Microbial Source Attribution Part 1 
Velsko, Allen, and Cunningham 

April 30, 2009 

58 

plot histograms of the δ values obtained from pairs of nodes for which M≠1, and expect 
to generate an accurate estimate of P(δ|M)  when the outbreak data is fragmented. This is 
because generally there is no way to verify that the existing samples are a representative 
sample from the true outbreak distributions.   
 
However, it is valid to plot δ values obtained from the M≠1 pairs to get P(δ|M>1), if the 
set of nodes represents a random sample of possible nodes in the network, and the 
network is large enough to preclude getting a M=1 pair by accident.  Thus, for example, 
the HIV data set from Trask, et. al. cited in section 2 consists of 63 husband-wife pairs 
drawn from a larger network of HIV infectees within Zambia.  Since these pairs were 
apparently drawn at random from the larger network, and the network is (evidently) much 
larger than the sample, the chance of a given wife (husband) being the infector or infectee 
of another husband (wife) in the sample set is low.  Under these circumstances we can 
construct a reasonable estimate of P(δ|M>1) by pairing each female sample with every 
other male sample besides her husband.   
 
If simulations of genetic evolution are performed on realistic outbreak transmission trees, 
the genetic difference data can be used to generate valid estimates of ROC curves and 
posterior probabilities since all the nodal relationships are known.  Of course, the 
accuracy of these estimates with respect to real outbreaks depends on how accurately the 
model represents transmission, growth, and mutation of the microbial populations.  
 
 


